
Cache Access Pattern Based Algorithm for Performance Improvement
of Cache Memory Management

REETU GUPTA1 , URMILA SHRAWANKAR2

1Department of Computer Science and Engineering
Priyadarshini Indira Gandhi College of Engineering,

Nagpur (MS) INDIA
guptareetu.rs@gmail.com

2Department of Computer Science and Engineering

G.H. Raisoni College of Engineering,
Nagpur (MS) INDIA

urmila@ieee.org

Abstract: - Changes in cache size or architecture are the methods used to improve the cache performance. Use
of a single policy cannot adapt to changing workloads. Non detection based policies cannot utilize the reference
regularities and suffer from cache pollution and thrashing. Cache Access Pattern (CAP), is a policy that detects
patterns, at the file and program context level, in the references issued to the buffer cache blocks. Precise
identification is achieved as frequently and repeatedly access patterns are distinguished through the use of
reference recency. The cache is partitioned, where each sub-cache holds the blocks for an identified pattern.
Once-identified pattern is not stored, repeatedly identified patterns is managed by MRU, frequently identified
and unidentified patterns are managed by ARC. Future block reference is identified from the detected patterns.
This improves the hit ratio, which in turn reduces the time spent in I/O and overall execution.

Key-Words: -access pattern, program counter, reference recency, reuse distance, buffer cache, reference
regularities, and replacement policies

1 Introduction
Buffer Caches are created in main memory and
managed by the operating system to avoid the
latencies associated with the accesses made by the
system call to the secondary storage devices. There
are various types of applications that exhibit
different reference patterns. Access behavior is
concerned with buffer hit ratio, one of the factors
affecting the system performance. Non detection
based buffer cache management schemes cannot
utilize the knowledge exhibited in the request
patterns and suffers from the problem of thrashing
and cache pollution [1]-[2] Cache Access Pattern
(CAP) based algorithms effectively and efficiently
utilizes the available buffer cache space by
identifying the patterns, exhibited in the accesses
made by the buffer cache blocks.

Information contained in the I/O access patterns
helps in understanding the application behavior.
Single replacement policy employed for managing
the cache cannot adapt efficiently to the changing
workloads within applications, leading to degraded
system performance [3]-[6].

Thus there exist an opportunity for applying
multiple replacement policies, for managing the
buffer cache. Now the choice of selecting the policy

to be applied from multiple options is based upon
the patterns observed in the applications. CAP
exploits the patterns in the accesses made by the
application as well as in the individual files that
are accessed in the application. Pattern
identification is achieved through the use of
program counters. This leads to precise
identification of locality strength, a crucial factor in
determining the block to be replaced upon a cache
miss.

CAP maintains a separate sub-cache partition for
each of the identified patterns. The key idea behind
partitioning the buffer cache is to increase the hit
ratio of individual sub-cache partition. This is
accomplished by selecting the policy to be applied
based upon the patterns held by the sub-cache
partition. Block allocation among the various
partitions is managed by a dynamic cache
management technique.

The paper is organized as follows; section 2
gives the overview of access pattern based
techniques. CAP pattern detection algorithm, with
its phases is explained in section 3. Section 4 deals
with the experimental results and discussion. Paper
concludes with the findings in section 6.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 271 Issue 9, Volume 10, September 2013

2 Overview of Pattern Based
Techniques
The access patterns are utilized and identified by the
techniques mentioned in Table 1 for enhancing the
performances.

3 Cache Access Pattern (CAP) Design
Section 3.1 illustrates the components of CAP.
Types of patterns detected are described in section
3.2. Section 3.3 gives the algorithm. The phases of
the algorithm are discussed in detail in section 3.4.

Table 1. Overview of Access Pattern Based Techniques

Sr.
No.

Technique

Use of Access Patterns

1

SHiP [1],

Associates the re-reference behavior with memory region, program counter
and reference history

2 RACE [2] Identifies patterns at the file and program context level.

3

Program
Instruction [3]

Reuse distance predicted by program instruction.

4

Hybrid Storage
[4],[5]

Random writes are predicted by access patterns on cache insertion and hits. [4]
,Block sharing, block access pattern and working set size at application level
are identified.

6

Buffer Pre-fetching
[6]

Pre-fetching is related with user access behaviour.

7

Access Frequency
[7]

Access pattern were identified based on the frequency of user request

8

RRIP[8] Cache pollution and thrashing was managed by using reference interval

9

Evicted Address
Filter [9]

Filter based approach is used to distinguish between high and low reuse
cache block.

10

Protection
Distance [10]

Cache eviction was associated with reuse distance

12 UBM [14],[15] Identified the access behavior in accesses made to individual files.

13 PCC [16],AMP [17]

Predicted the access behavior using program counter.

14

Data Locality[18]
,[19]

Data access locality was determined by using the complier based hints [18],
software generated self test [19] approach.

15

Reuse Distance [20]
– [21]

The reuse behavior of the cache block was determined using the program
counter [20], by analyzing the loop transformation [20].

3.1 Components of CAP
CAP is composed of three components first the
pattern detector, second the cache manager and third
is replacement policy selector.

3.1.1 Pattern Detector
It identifies the patterns using the CAP
detection algorithm.

3.1.2 Cache Manger
Cache manager dynamically adjust the size of
each sub-cache partitions and manages the
allocation of blocks among the partitions.

3.1.3 Policy Selector
Based on the identified pattern which
replacement policy is to be applied from
multiple available policies is decided by the

policy selector. Most Recently Used (MRU)
Adapative Replacement Cache (ARC) are the
policies used by CAP for identified patterns.

3.2 Types of Pattern Identified
CAP identifies four types of pattern mentioned
below.

3.2.1 Once Identified:
Blocks referenced only once and never visited again
are classified under once identified pattern.

3.2.2 Repeatedly Identified:
Blocks those are being referenced after regular
interval come under this category. These are the
least referenced blocks that are likely to be accessed
in near future.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 272 Issue 9, Volume 10, September 2013

3.2.3 Frequently Identified:
Blocks under this category are the ones that are
referenced most recently and are likely to be
referenced in the near future.

3.2.4 Un-identified:
The blocks that do not exhibit the above
behavior are classified as un-identified.

3.3 CAP Pattern Detection Algorithm
Detail working of CAP based pattern detection
algorithm is given below. Patterns are identified
using file inode, program counter, block number
and current referenced time. The algorithm makes
use of three data structures Recency Table (RT),
File Hash table (FHT), PC Hash Table (PCHT).
1. CAP (inode, blk, pc, currtime)
2. Begin
3. If (pc is not in RT) then
4. {pc = pc, totalblks = 1, validreceny = 0.0,
avgrecency = -1.00,inode = inode,blk = blk}
5. Else if ((pc is in RT) & (inode & blk is not in
RT)) then
6. totalblks = increment by 1,
7. Else if ((pc present in RT) && (inode and blk
present in RT)) then
8. {if (totalblks > 1) then
9. {validreceny = +1,index=0,
10. do{ If(inode & blk at first place)then
11. {avgreceny=index/(totalblks -1)
12. Move inode,blk to end position found =1}
13. Else
14. index = + 1, found = 0}
15. } until (found == 1),}
16. Else {validreceny = increment by 1,
avgrecency = 0.5,
Move ionde,blk to end position} }
17. End if
18. If (pc is not in PCHT) then
19. pc = pc, fresh = reuse = period = 0,
20. If (inode is not in FHT) then
21. inode = inode, start=end=blk, fresh = +1
22. Else if (inode in FHT)&(blk in inode seq)then
23. {reuse = +1, fresh = -1,
Pattern: Repeatedly Identified, from: FT
24. Goto Step 36}
25. Else if (inode in FHT) & (blk is next address in
inode seq)) then
26. {end = blk, fresh = +1}
27. End If
28. If (reuse >= fresh) then
29. {Pattern: Repeatedly Identified, from : PCHT
Goto Step 36}
30. Else if (fresh >= Sequential Threshold) then

31. Pattern: Once Identified, from: PCHT
32. Else Pattern: Un-Identified
33. End If
34. If (avgRecency for PC in RT table > -1)
35. {If (avgRecency <= Repeated Threshold)
36. Pattern: Frequently Identified
37. Else
38. Pattern = Repeatedly Identified}
39. End If
40. End

3.4 Phases of CAP
The algorithm works in four phases, first phase
deals with the recency table; second and third phase
updates the file and pc tables. Based on the search
results of three tables, pattern is predicted in the
fourth phase.

3.4.1 Phase I: Update Recency Table (RT)
The structure of the recency table is shown in Table
2. The flow chart for maintaining the rececncy table
is shown in Fig 1. Basic processing step of this
phase are:-
• Receive Request: Block request is processed by

CAP by using the attributes (inode, block
number, PC, current time).

• Check PC, inode and block: Requested block
and inode are checked in recency table. If found
the fields are updates else a new entry is
made.CAP is composed of three components
first the pattern detector, second the cache
manager and third is replacement policy
selector.

3.4.2 Phase II: Update File Hash Table (FHT)
File hash table maintains the record of each block
reference. Its structure is shown in Table 3 and the
process of maintain the table is explained in
flowchart of Fig 2. The conditions checked on
occurrence of block in file table are:-
• Found: If the referenced block occurs in the file

table its access pattern is predicted in the
manner described in the pattern detection phase.

• Not Found: If the reference block dose not
exists in a sequence, then block address is
verified. If it is next address the existing
sequence is extended. Otherwise a new
sequence is entered in the file table.

3.4.3 Phase III: Update PC Hash Table (PCHT)
The program counter associated with the block
being referenced is tested for the following
conditions:-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 273 Issue 9, Volume 10, September 2013

Check PC: For each block request, the programs
counter (pc) accessing the block is checked in the

PC table with the following conditions.

Table 2. Recency Table Structure

Rececny Table(RT)

PC TotalBlk ValidRecency AvgRecency Blk(inode, blk)

Figure 1. Maintaining Recency Table

Table 3. File Hash Table Structure

File Hash Table(FHT)

Inode Start End

Figure 2. Maintaining File Hash Table

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 274 Issue 9, Volume 10, September 2013

• Found: If the pc is found in PC table, block
referenced by it is checked in the data structure
table.
o Present in FT: If file table contains the

referenced block it means it is revisited by
the program counter. Hence the fresh field
is decremented, reuse field is incremented.

• Not Present in FT: If file table reports that
block is not revisited before, it indicates that the
block is referenced by the pc for the first time.
Hence fresh field is incremented Not Found: If
program counter is not found in the pc table
then a new entry is made and fresh in
incremented by 1 and reuse is set to zero.

3.4.4 Phase IV: Predicting Pattern
Block pattern is predicted by analyzing the entries
made in the data file table, program counter table
and recency table.

Check in FT: The requested block is first searched
in the sequences of file hash table to verify if it
revisited.

Table 4. PC Hash Table Structure

PC Hash Table(PCHT)
Pc Fresh Reuse

Figure 3. Maintaining PC Hash Table

o If revisited, then reference is classified as
repeatedly identified. Then reference
recency is checked.

Check in PCHT: If not found in the file table, it is
searched in the PC table. If block exist fresh and
reuse fields are compared.

o If reuse field is greater than fresh counter
then repeatedly identified pattern is returned
by the PC table and the reference recency is
checked.

o Otherwise if fresh field is found to greater
than the once-identified threshold is
checked. If threshold is crossed block
reference is categorized as once identified,
otherwise as un-identified.

Check Recency Table: When reference is
categorized as repeatedly identified recency table is
referred. If the average receny is found to be greater
than or equal to the threshold set for frequently
identified, then the block reference is said to exhibit
frequently identified pattern.

The pattern identification phase is explained in
two parts, A and B. Part A in Fig. 4, detects,
repeatedly identified and un-identified pattern.
Frequently identified pattern are determined once-
identified from reference recency as in part B,
shown in Fig 5.

Figure 4. Predicting Pattern – Part A

Figure 5. Predicting Pattern – Part B

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 275 Issue 9, Volume 10, September 2013

4 Experimental Results
The buffer cache environment is created using
Accusim [22] simulator. Modified Linux strace
utility intercepts the system calls made by the
processes and records the following information
about the, file identifier (inode), request size, I/O
triggering program counter, starting address. The
program counters are obtained by tracing the
function call stack backwards in the trace file.

4.1 Test Results
The applications used for evaluating the
performance of CAP are listed below in Table 4.
Table 5 lists the configuration when the applications
were run concurrently. Details about total number of
I/O references made by the applications, the total
size of the application in MB whose traces are
obtained by using modifying linux strace utility are
mentioned in Table 4 and 5.

CAP has been compared with RACE pattern
detection policy. The difference between the types
of pattern identified and the replacement policy used
is shown in Table 7.

Application Number of References Data Size
Cscope 1119161 260 MB
Viewperf 303123 495 MB
gcc 158667 41 MB

Table 6. Concurrent Application Statistics

Application Number of
References

Data Size
[MB]

Combo1 gcc + cscope 300
Combo2 Cscope + gcc+

viewperf
755

Table 7. Comparison of Patterns and Policies

CAP RACE
Patterns
Identified

Policy
Used

Patterns
Identified

Policy
Used

Once -

Not

Sequential LRU
Repeatedly

MRU Looping LRU/MR

 Unidentified ARC Others MRU
Frequently

ARC ------ -------

4.2. Hit Ratio Comparison
The future access request of the block is predicted
by using the information contained in the I/O
request. Thus when the block request arises the
referenced block is present in the buffer cache. Thus
buffer cache misses are reduced. The comparison of

various application and hit ratio is discussed in the
following section. CAP hit ratio is compared with
RACE and other non detection based algorithms.
• Cscope: Table 8 shows the comparison of

cscope hit ratio with CAP and various
algorithms. And the comparison graph of hit
ratio is shown in Fig 6. From the graph it can be
seen that hit ratio is maximum with CAP
compared to other algorithms.

• Viewperf: Table 9 shows the comparison of
viewperf hit ratio with CAP and various
algorithms. And the comparison graph of hit
ratio is shown in Fig 7. From the graph it
can be seen that hit ratio is maximum with
CAP compared to other algorithms.

• Combo 1: Cscope and gcc is run in
combination for identifying the access patterns.
Table 10 shows the comparison of Combo1 hit
ratio with CAP and various algorithm. And the
comparison graph of hit ratio is shown in Fig 8.
From the graph it can be seen that hit ratio is
maximum with CAP compared to other
algorithms.

• Combo 2: Combined application Cscope,
Viewperf and gcc is run in combination for
identifying the access patterns. Table 11 shows
the comparison of Combo2 hit ratio with CAP
and various algorithm. And the comparison
graph of hit ratio is shown in Fig 9. From the
graph it can be seen that hit ratio is maximum
with CAP compared to other algorithms.

Table 8. Cscope Hit Ratio Comparison

Cache
Size

(MB)
RACE

%
CAP

%
ARC

%
LRU

%
LIRS

%
MQ
%

2Q
%

8 44 54 43 43 44 43 44
16 45 54 44 43 44 43 44
32 48 54 45 44 45 44 44
64 50 54 46 45 45 45 45

128 59 97 46 46 77 54 75
256 87 97 97 97 97 97 97

Fig 6. Cscope Hit Ratio

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 276 Issue 9, Volume 10, September 2013

Table 9. Viewperf Hit Ratio Comparison

Cache
Size
(MB)

RACE
%

CAP
%

ARC

%

LRU

%

LIRS

%

MQ
%

2Q %

8 74 89 86 66 86 84 86
16 70 89 87 68 87 88 87
32 51 93 88 88 88 88 90
64 66 93 92 53 91 93 92
128 80 93 93 73 91 93 93
256 90 93 93 83 93 93 93

Fig 7. Viewperf Hit Ratio

Table 10. Combo1 Hit Ratio Comparison

Cache
Size
(MB)

RACE
%

CAP
%

ARC

%

LRU

%

LIRS

%

MQ
%

2Q %

8 53 59 48 47 50 47 50
16 55 60 51 48 50 48 50
32 56 60 51 49 51 49 51
64 52 60 52 51 52 51 52
128 57 96 53 52 79 59 77
256 82 96 96 96 96 96 96

Fig 8. Combo1 Hit Ratio

Table 10. Combo2 Hit Ratio Comparison

Cache
Size

(MB)
RACE

%
CAP

%

ARC
%

LRU

%

LIRS

%

MQ
%

2Q %

8 62 65 53 54 56 54 56
16 53 65 57 55 58 55 57
32 64 66 58 57 58 56 58
64 62 66 60 59 59 59 59

128 70 81 61 60 81 80 53
256 74 96 96 66 95 96 96

Fig 9. Combo 2 Hit Ratio

4.3. Total Execution Time Comparison
As the future access request is predicted by CAP the
requested block is available in the buffer cache. As
it is the main memory to main memory transfer the
time spent in the I/O is reduced. The total time spent
in the execution is minimum compared to the RACE
and other non detection based scheme. The
comparison with different application under varying
cache size is shown below.

• Cscope: Table 11 shows the comparison of

cscope execution time with CAP and various
algorithms. And the comparison graph of of
total execution time is shown in Fig 10. From
the graph it can be seen that total execution time
is minimum with CAP compared to other
algorithms.

• Viewperf: Table 12 shows the comparison of
total execution time with CAP and various
algorithm. And the comparison graph of total
execution time is shown in Fig 11. From the
graph it can be seen that execution time is
minimum with CAP compared to other
algorithms.

• Combo 1: Cscope and gcc is run in

combination for identifying the access patterns.
Table 13 shows the comparison of Combo1 total

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 277 Issue 9, Volume 10, September 2013

execution time with CAP and various
algorithms. And the comparison graph of
execution time is shown in Fig 12. From the
graph it can be seen that execution time is
minimum with CAP compared to other
algorithms.

• Combo 2: Combined application Cscope,
Viewperf and gcc is run in combination for
identifying the access patterns. Table 14 shows
the comparison of Combo2 total execution time
with CAP and various algorithms. And the
comparison graph of execution time is shown in
Fig 13. From the graph it can be seen that
execution is minimum with CAP compared to
other algorithms

Table 11. Cscope Total Execution time
Comparison

Fig 10. Cscope Total Execution Time

Table 12. Viewperf Total Execution time
Comparison

Cache

Size

(MB)

RACE

%
CAP %

ARC%

LRU %

LIRS%

MQ %

2Q %

8 842 .51 79 .74 912 .02 863 .77 861 .09 868 .77 864 .28

16 823.92 795 .75 844 .94 842. 79 842 .09 840 .11 845 .58

32 813.12 784.18 830.1 830 .02 839 .43 824 .52 825 .1

64 926.23 784 .18 805.69 797 .72 820 .7 800 .73 801 .13

128 788.09 784 .18 785.32 784 .28 809 .81 784 .28 784 .63

256 788.4 784 .18 784 .21 784 .21 784 .24 784 .21 784 .64

Fig 11. Viewperf Total Execution Time

Table 13. Combo1 Total Execution time
Comparison

Cache
Size

(MB)

RACE
%

CAP %

ARC%

LRU %

LIRS %

MQ %

2Q %

8 2766.44 1691.65 2526.7 2777.44 2503.47 2769.93 2166 .68

16 2661.96 2019.5 2457.9 2695.28 2446.82 2687.69 2477 .63

32 2423.77 2005.03 2423.56 2561.37 2406.12 2569.16 2448 .73

64 2566.19 1990.2 2371.47 2476.43 2369.77 2479.74 2393 .07

128 1339.05 494.19 2315.67 2409.16 1311.65 2109.95 1334 .2

256 446.25 494.19 494.29 494.3 494.31 494.3 495 .52

Cache

Size

(MB)

RACE

%

CAP %

ARC%

LRU %

LIRS

%

MQ %

2Q %

8 2188.94 1807.07 2245.43 2318.13 2217.33 2307.98 2242.77

16 2282.77 1798.74 2213.38 2296.01 2204.57 2289.5 223786

32 2459.04 1791.31 2195.12 2256.87 2180.16 2262.09 2219.95

64 2002.05 1781.72 2154.01 2209.33 2151.28 2209.43 2161 .86

128 1741.3 272.26 2096.03 2158.06 106716 1852.61 1068 .31

256 830.15 272.26 272 .28 272 .28 272.26 272.28 272 .5

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 278 Issue 9, Volume 10, September 2013

Fig 12. Combo1 Total Execution Time

Table 14. Combo2 Total Execution time
Comparison

Cache
Size

(MB)

RACE
%

CAP %

ARC%

LRU %

LIRS %

MQ %

2Q %

8 3463.15 2720.31 3334.17 3563.1 3266.72 3558.02 3282.37

16 3360.52 2697.91 3190.76 3466.49 3176.33 3459.02 3223.82

32 3312.56 2673.04 3147.11 3315.46 3138.95 3321.07 3170.58

64 3308.45 2659.98 3073.52 3182.6 3082.31 3188.79 3085.41

128 1151.15 3005.26 3005.26 3094.42 2028.16 2108.49 3515.46

256 1125.98 1151.15 1155.46 1156.1 1190.06 1156.1 1156.15

Fig 13. Combo2 Total Execution Time

4.4. I/O Time Comparison

The hit ratio of the application is improved by CAP
as the miss are reduced. As block is available in the
buffer cache, when the request arises the time spent

in the I/O is reduced. The time required by CAP for
performing the I/O with various applications under
varying cache sizes are shown below.

• Cscope: Table 15 shows the comparison of

cscope I/O time with CAP and various
algorithms. And the comparison graph of I/O
time is shown in Fig 14. From the graph it can be
seen that I/O is minimum with CAP compared to
other algorithms.

• Viewperf: Table 16 shows the comparison of I/O

time with CAP and various algorithm. And the
comparison graph of I/O time is shown in Fig 15.
From the graph it can be seen that I/O is
minimum with CAP compared to other
algorithms.

• Combo 1: Cscope and gcc is run in combination
for identifying the access patterns. Table 17
shows the comparison of Combo1 I/O time with
CAP and various algorithms. And the
comparison graph of I/O time is shown in Fig 16.
From the graph it can be seen that I/O is
minimum with CAP compared to other
algorithms.

• Combo 2: Combined application Cscope,
Viewperf and gcc is run in combination for
identifying the access patterns. Table 18 shows
the comparison of Combo2 I/O time with CAP
and various algorithms. And the comparison
graph of I/O time is shown in Fig 17. From the
graph it can be seen that I/O is minimum with
CAP compared to other algorithms.

Fig 14. Cscope I/O Time Comparison

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 279 Issue 9, Volume 10, September 2013

Table 16. Viewperf I/O time Comparison

Cache
Size

(MB)

RACE
%

CAP

%

ARC%

LRU %

LIRS %

MQ %

2Q %

8 152.96 101.19 217.47 169.22 166.55 174.23 169.74

16 137.37 101.2 150.4 148.24 147.55 145.56 151.03

32 126.46 89.64 135.55 135.47 144.89 129.97 130.56

64 101.68 89.64 111.14 103.18 126.15 394.54 106.58

128 85.54 89.64 90.78 89.73 115.27 89.73 90.08

256 85.85 89.64 89.67 89.66 89.7 89.66 90.101

Fig 15. Viewperf I/O Time

Table 17. Combo1 I/O time Comparison

Cache
Size

(MB)

RACE

%

CAP %

ARC%

LRU %

LIRS %

MQ %

2Q %

8 2224.63 2033.47 2184.88 2435.62 2161.26 2428.11 2508.49

16 2320.15 1677.68 2116.08 2353.47 2105.01 2345.87 2135.81

32 2181.95 1663.21 2081.74 2219.56 2064.3 2227.34 2106.91

64 2024.37 1648.38 2029.66 2134.61 2027.96 2137.93 2051.26

128 2207.24 152.38 1973.85 2067.34 969.83 1768.14 992.39

256 152.43 152.38 152.48 152.49 152.49 152.49 153.7

Fig 16. Combo1 I/O Time

Table 18. Combo2 I/O time Comparison

Cache
Size
(MB)

RACE

%

CAP

%

ARC%

LRU %

LIRS %

MQ %

2Q %

8 2247 1805 2418 2647 2351 2642 2367

16 2245 1782 2275 2551 2261 2543 2308

32 2317 1757 2232 2400 2223 2405 2255

64 2233 1744 2158 2267 2167 2273 2170

128 235 .4 235 .4 2089 2179 1112 1193 2600

256 238.2 235.4 239.7 240.3 274.3 240.3 240.4

Fig 17. Combo2 I/O Time

4.5. Reference Recency
Reference recency is used to distinguish between
frequently and repeatedly identified access patterns.
An example of repeatedly and frequently identified
pattern is shown below

• Repeatedly Identified Pattern:
Consider a repeatedly identified sequence as {0 1 2
3 4 1 2 3 4 }.From the calculation it can be seen that
repeatedly identified always have their recencies 0.
Table 19 shows the reference and average recency
calculation for the sequence. The reference recency
is calculated using the formula in column heading 4
where list of previously accessed blocks, p is block
position and i is the ith access of the sequence.

• Frequently Identified Pattern:

Consider a temporarily clustered sequence from

(9021- 9032) for cscope at instance (65461,
9021, 31581990, 382). RACE classifies it as
repeatedly identified. Through reference
recency CAP correctly classifies it as frequently
identified. The recency of frequently identified
pattern is found to be greater than 0.4

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 280 Issue 9, Volume 10, September 2013

Table 19. Repeatedly Identified Pattern Recency

i blo

c k

Li Pi=(Pi

/

Ri

1 9021 Empty ∞ ∞
2 9022 9021 ∞ ∞
3 9022 9021, 9022 1 1
4 9023 9021, 9022 ∞ ∞
5 9026 9021, 9022, 9023 ∞ ∞
6 9027 9021, 9022, 9023, 9026 ∞ ∞
7 9028 9021, 9022, 9023, 9026, 9027 ∞ ∞
8 9029 9021, 9022, 9023, 9026, 9027, 9028 ∞ ∞
9 9030 9021, 9022, 9023, 9026, 9027, 9028, 9029 ∞ ∞
10 9031 9021, 9022, 9023, 9026, 9027, 9028, 9029,

∞ ∞

11

9032 9021, 9022, 9023, 9026, 9027, 9028, 9029,

9030,

∞

∞

12

9023 9021, 9022, 9023, 9026, 9027, 9028, 9029,

9030,

0.22

0.6

Fig 18. Frequently Identified Pattern by CAP in Yellow Color

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 281 Issue 9, Volume 10, September 2013

Fig 19. Misclassified as Repeatedly Identified Pattern by RACE in Green Color

5 Conclusions
The CAP pattern detection algorithm precisely
identifies the pattern at the file and program context
level through the use of program counter. The types
of pattern detected are categorized as once-
identified, repeatedly-identified, frequently
identified, and unidentified. CAP shows improved
performance compared to RACE pattern detection
by improving the hit ratio, and reducing the time
spent in performing the I/O and overall execution.
CAP differs from RACE in the following manner.
• It detects an additional access pattern,

frequently identified from the looping
references.

• RACE uses MRU sequential, MRU/LRU for
looping and LRU for other pattern. CAP does
not store once-identified pattern, uses MRU for
repeatedly identified ARC for frequently and
unidentified pattern.

• RACE made use of a looping period based
marginal gain policy for managing the cache
partition. CAP made use of a probabilistic
approach for managing the partition.
The algorithm automatically identifies the

patterns and hence user and programmer are not
required to understand the application behavior. Use

of program counter helps in correctly identifying the
references made to the small file.

As the policies to be applied are based on
identified pattern, CAP can better adjust itself to the
changing workload. Use of multiple policies helps
to increases the hit ratio of each individual sub
cache partition which in turn improves the overall
hit ratio. This leads to effective and efficient
utilization of the available limited buffer cache
space.

The knowledge obtained in the I/O access
pattern could be utilized to for hybrid structure and
mobile storage devices to enhance the performance
of on demand multimedia and gaming applications.
It could also be used with the network to reduce
traffic thereby reducing the latencies encountered in
web. By observing the patterns on multi-core data
sharing can be enhanced.

References:
[1] Wu, Carole-Jean, et al. "SHiP: Signature-based

hit predictor for high performance caching."
Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture.
ACM, 2011.

[2] Yifeng Zhu; Hong Jiang, "RACE: A Robust
Adaptive Caching Strategy for Buffer Cache,"
Computers, IEEE Transactions on , vol.57,
no.1, pp.25,40, Jan. 2008
doi:10.1109/TC.2007.70788

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 282 Issue 9, Volume 10, September 2013

[3] Keramidas, G.; Petoumenos, P.; Kaxiras, S.,
"Cache replacement based on reuse-distance
prediction," Computer Design, 2007. ICCD
2007. 25th International Conference on , vol.,
no., pp.245,250, 7-10 Oct. 2007.

[4] Seung-Ho Park; Jung-Wook Park; Shin-Dug
Kim; Weems, C.C., "A Pattern Adaptive
NAND Flash Memory Storage Structure,"
Computers, IEEE Transactions on , vol.61,
no.1, pp.134,138, Jan. 2012 doi:
10.1109/TC.2010.212

[5] Miranda, Alberto, and Toni Cortes. "Analyzing
Long-Term Access Locality to Find Ways to
Improve Distributed Storage Systems." In
Parallel, Distributed and Network-Based
Processing (PDP), 2012 20th Euromicro
International Conference on, pp. 544-553.
IEEE, 2012.

[6] Joonho Choi; Reaz, A.; Mukherjee, B., "A
Survey of User Behavior in VoD Service and
Bandwidth-Saving Multicast Streaming
Schemes," Communications Surveys &
Tutorials, IEEE , vol.14, no.1, pp.156,169,
2012 doi:10.1109/SURV.2011.030811.00051

[7] Danqi Wang; Chai Kiat Yeo, "Exploring
Locality of Reference in P2P VoD
Systems," Multimedia, IEEE Transactions on,
vol.14, no.4, pp.1309, 1323, Aug.2012

[8] Jaleel, Aamer, Kevin B. Theobald, Simon C.
Steely Jr, and Joel Emer. "High performance
cache replacement using re-reference interval
prediction (RRIP)." In ACM SIGARCH
Computer Architecture News, vol. 38, no. 3,
pp. 60-71. ACM,2010.

[9] Seshadri, Vivek, Onur Mutlu, Michael A.
Kozuch, and Todd C. Mowry. "The Evicted-
Address Filter: A unified mechanism to address
both cache pollution and thrashing." In 21st
international conference on Parallel
architectures and compilation techniques, pp.
355-366. ACM, 2012.

[10] Duong, Nam, et al. "Improving Cache
Management Policies Using Dynamic Reuse
Distances." 45th Annual IEEE/ACM
International Symposium on Microarchitecture,
Pages 389-400, 2012

[11] Gupta, Reetu, and Urmila Shrawankar.
"Block Patten Based Buffer Cache
Management." 8th International Conference on
Computer Science and Education (ICCSE), pp
963-968, April 26-28, 2013

[12] Gupta, Reetu, and Urmila Shrawankar.
"Managing Buffer Cache by Block Access
Pattern." IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 6, No 2,
November 2012

[13] Gupta, Reetu, and Urmila Shrawankar “A
Methodology for Buffer Cache Block
AccessPattern Based Policy Selection”,
Engineering and Systems, (SCES),Student
Conference on, 12-14,April 2013.

[14] Kim, Jong Min, Jongmoo Choi, Jesung Kim,
Sam H. Noh, Sang Lyul Min, Yookun Cho, and
Chong Sang Kim. "A low-overhead high-
performance unified buffer management
scheme that exploits sequential and looping
references." Symposium on Operating System
Design & Implementation-Volume 4, pp. 9-9.
USENIX Association, 2000.

[15] Gniady, Chris, Ali R. Butt, and Y. Charlie Hu.
"Program-counter-based pattern classification
in buffer caching." Symposium on Opearting
Systems Design & Implementation, vol. 6, pp.
395-408. 2004

[16] Zhou, Feng, Rob von Behren, and Eric Brewer.
"AMP: Program context specific buffer
caching." USENIX Technical Conference.
2005.

[17] Yong Li; Abousamra, A.; Melhem, R.;
Jones, A.K., "Compiler-Assisted Data
Distribution and Network Configuration for
Chip Multiprocessors," Parallel and Distributed
Systems, IEEE Transactions on , vol.23, no.11,
pp.2058,2066, Nov.2012 doi:
10.1109/TPDS.2011.279

[18] Di Carlo, S.; Prinetto, P.; Savino, A.,
"Software-Based Self-Test of Set-
AssociativeCache Memories," Computers,
IEEE Transactions on , vol.60, no.7,
pp.1030,1044, July 2011 doi:
10.1109/TC.2010.166

[19] Fensch, C.; Barrow-Williams, N.; Mullins,
R.D.; Moore, S., "Designing a PhysicalLocality
Aware Coherence Protocol for Chip-
Multiprocessors," Computers, IEEE
Transactions on , vol.62, no.5, pp.914,928,
May 2013

[20] Albericio, Jorge, et al. "Exploiting reuse
locality on inclusive shared last-level caches."
ACM Transactions on Architecture and Code
Optimization (TACO) Volume 9 Issue 4,
January 2013

[21] hungsoo Lim; Seong-Ro Lee; Joon-Hyuk
Chang, "Efficient implementation of an SVM-
based speech/music classifier by enhancing
temporal locality in support vector references,"
Consumer Electronics, IEEE Transactions on ,
vol.58, no.3, pp.898,904, August 2012 doi:
10.1109/TCE.2012.6311334

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 283 Issue 9, Volume 10, September 2013

[22] Butt, Ali R., Chris Gniady, and Y. Charlie Hu.
"The performance impact of kernel prefetching
on buffer cache replacement algorithms." In
ACM SIGMETRICS Performance Evaluation
Review, vol. 33, no. 1, pp. 157-168. ACM,
2005

[23] Urmila Shrawankar, Ashwini Meshram et. al
“Pattern Based Real Time Disk Scheduling
Algorithms for Virtualized Environment,"
ICETET, Sixth International Conference on ,
Dec 2013.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Reetu Gupta, Urmila Shrawankar

E-ISSN: 2224-3402 284 Issue 9, Volume 10, September 2013

